金融业落地大模型面临数据管理等挑战 联邦学习提供创新路径

Aa
分享到:

  杨强认为,AI Agent(人工智能业务助理)是大模型面向应用端发展的下一阶段,其基于大模型的通用能力,并结合相关领域知识适应不同场景需求。

  新京报贝壳财经讯(记者潘亦纯)金融业因数字化程度高、商业化应用场景潜在价值高等,成为AI(人工智能)大模型应用的最佳场景之一。然而,AI大模型要真正落地,还面临着诸多挑战,如近年来各项法律法规对私域数据使用有“数据可用不可见”的要求,使得金融业即便有海量自治的高质量数据,仍受限于隐私无法共享利用。

  金融业如何更好利用AI大模型赋能发展?7月2日,在以“大模型时代AI前沿与金融应用”为主题的微众媒体学院系列活动上,微众银行首席人工智能官杨强表示,大模型的应用落地涉及数据管理、算法优化、系统设计和成本控制等多方面的综合挑战,需要持续的技术创新和策略调整,以推动AI技术更加成熟、高效地服务于社会各个领域。

金融相关推荐

金融推荐资讯

金融相关资讯

推荐报告

相关图表